
The Pumping Lemma and Closure
properties for Context-free Languages

The pumping Lemma for CFLsThe pumping Lemma for CFLs

 Issue: Is there any language not representable
by CFGs ?

Ans: yes! Ex: {anbncn| n > 0 }. But how to
show it ?

 For regular languages:
◦ we use the pumping lemma that utilizes the “finite-state”

property of finite automata to show the non-regularity of
a language.

 For CFLs:
◦ can we have analogous result for CFLs ?
◦ ==> Yes! But this time uses the property of parse tree

instead of the machine (i.e., PDAs) recognizing them.

Minimum height of parse Minimum height of parse
trees for an input stringtrees for an input string

 Definition: Given a (parse) tree T,
 h(T) = def the height of T, is defined to be the

distance of the longest path from the root to its
leaves.
◦ Ex: a single node tree has height 0,
◦ h(T1) = m and h(T2) = n ==> h((root T1 T2)) = max(m,n)

+1.
 Lemma 5.1:

G: a CFG in Chomsky Normal Form ;
D = A -->*G w a derivation with corresponding parse tree TD

with height n, where A N and w S*. Then
|w| 2 n-1. [i.e, height = n => width ≤ 2n-1.]

Note: since G is in cnf, every node of TD has at most
two children, hence TD is a binary tree.

Pf: By ind. on n.

Shallow trees cannot have many Shallow trees cannot have many
leaves leaves

 Basis: n = 1 (not 0 why ?)
Then D : A -->G a (or S -->G e). ==> h(TD) = 1 and |a| 2 1-1 .

Inductive case: n = k + 1 > 1. Then $ B, C, D1, D2 s.t.
D : A -->G BC -->*G w and D1: B -->*G w1 , D2: C-->*G w2 s.t.
w = w1 w2 and TD = (A TD1 TD2) and max(h(TD1), h(TD2)) = k.

By ind. hyp., |w1| 2 h(T
D1

) -1 2 k -1 and |w2| 2 h(T
D2

) -1 2k -1

Hence w = |w1| + |w2| (2k -1 + 2k -1) = 2n-1. QED
Lemma 5.2: G: a CFG in cnf;

S -->*G w in S*: a derivation with parse tree T.
If |w| 2n ==> h(T) n + 1.

Pf: Assume h(T) n
==> |w| 2n-1 < 2n --- by lemma 5.1
==> a contradiction !! QED

The pumping lemma for CFLsThe pumping lemma for CFLs

 Theorem: 5.3: L : a CFL. Then $ k > 0 s.t. for all
member z of L of length k, there must exist a
decomposition of z into uvwxy (i.e., z = uvwxy)
s.t.
(1). |vwx| k,
(2). |v| + |x| > 0 and
(3). uviwxiy L for any i 0.

 Formal rephrase of Theorem 5.3: (L CFL) =>
$k>0 zL (|z| k =>

uvwx$y ((z = uvxyz) /\
(1) /\ (2) /\ (3)))).

Contrapositive form of the pumping Contrapositive form of the pumping lammalamma

 Contrapositive form of Theorem 5.3:
◦ (Recall that ~q => ~ p is the contrapositive of p => q)
◦ Let Q =def $k>0zL (|z| k =>

uvwx$y ((z = uvxyz) /\ (1) /\ (2) /\
(3)))).
Then ~ Q = k>0 $z L (|z| k /\

uvwxy ((z = uvxyz)/\(1)/\(2))
=>~(3)))).

= k>0$zL (|z| k /\
uvwxy ((z = uvxyz)/\(1)/\(2)) =>

$i 0 uviwxiy L))
= k>0 $zL (|z| k /\

uvwxy=z ((1)/\(2) => $i 0 uviwxiy L)).
i.e., for all k > 0 there exists a member z of L with length k s.t.
for any decomposition of z into uvwxy s.t. (1) /\ (2) hold, then
there must exist i 0 s.t. uviwxiy L.

The contrapotive form of Theorem 5.3 : Given a language L, If ~Q
then L is not context free.

GameGame--theoretical form of the theoretical form of the
pumping pumping lammalamma::

~ Q: Game-theoretical argument: (to show ~Q true)
k>0 1. D picks any k > 0
$zL |z| k /\ 2. Y pick a z L with length k
uvwxy=z (1)/\(2) => 3. D decompose z into uvwxy with

|vwx| k /\ |v| + |x| > 0
$i (i 0 /\ uviwxiy L) . 4. Y pick a numer i 0

5. Y win iff (uviwxiy L or D fails to
pick k or decompose z at

step1&3)
Notes:
0. If Y has a strategy according to which he always win the game, then ~Q is true, otherwise

~Q is false.
1. To show that “$x P” is true, it is Your responsibility to give a witness c s.t. P is indeed true

for that individual c. if Your opponent, who always tries to win you, cannot show that P(c)
is false then You wins.

2. On the contrary, to show that “x P” is true, for any value c given by your opponent, who
always tries to win you and hence would never give you value that is true for P provided
he knows some values is false for P, You must show that P(c) is true.

The set of prime numbers is not The set of prime numbers is not
contextcontext--freefree

Ex5.1:PRIME =def {ak | k is a prime number } is not context-
free.

Pf: The following is a winning strategy for Y:
1. Suppose D picks k > 0 // for any k picked by D
2. Y picks z = ap where p is any prime number >k+2 (note
p>3)

(obviously z PRIME and |z| k).
3. Suppose D decompose z into auavawaxay with

v + x > 0 /\ v + w + x k
4. Y pick i = u + w + y = p-(v+x) > k+2 –k =2 (note k
v+x 1)

Now auaviawaxiay = au + w + y a (v+x) i = ai a (v+x) i = a(v+x+1)i.Since
i>2 and v+x+1 2 , a(v+x)(i+1) PRIME.

==> Y win. Since Y always win the game no matter what k is chosen and how
z is decomposed at step 1&3, by the game-theoretical argument, PRIME is not
context-free. QED

Additional exampleAdditional example

Ex 5.2: Let A = {anbncn | n > 0 } is not context-free.
Pf: Consider the following strategy of Y in the game:
1. D picks k > 0
2. Y pick z = ak bk ck // obviously z A and |z| k
3. Suppose D decompose z into uvwxy with

|vx| > 0 /\ |vwx| k
4. Y pick i = 2 ==> who wins ?
case1: v (or x) contains distinct symbols (a&b or b&c)

==> uv2wx2y is not of the form:a*b*c* ==> uv2wx2y
A

case2: v and x each consist of the same symbol.
(i.e., each is of the form a* or b* or c*).

==> uv2wx2y increase only a’s or b’s or c’s but not all
==> uv2wx2y A
In all cases uv2wx2y A So Y always win and A CFL.

QED

Proof of the pumping lemmaProof of the pumping lemma

pf: Let G = (N,S,P,S) be any CFG in cnf s.t. L= L(G).
Suppose |N| = n and let k = 2n.
Now for any z L(G) if |z| k, by Lem 5.2, $ a parse
tree T for z with h(T) = m n+1. Now let

P = X0 X1 …. Xm
be any longest path from the root of T to a leaf of T.

Hence 1. X0 = S is the start symbol
2. X0 ,X1 ,…. Xm-1 are nonterminal symbols and
3. Xm is a terminal symbol.

Since X0 X1 …. Xm-1 has m > n nodes, by the pigeon-hole
principle,

there must exist i j s.t. Xi = Xj
Now let I < m-1 be the largest number s.t. XI+1 ,…. Xm-
1 consist of distinct symbols and XI = XJ for some
I<J< m.

Let XI = XJ = A.

Proof of the pumping lemma (cont’d)Proof of the pumping lemma (cont’d)

Let TI be the subtree of T with root XI and
TJ the subtree of T with root XJ

Let yield(TJ) = w (hence XJ +
G w or A +

G w ---
(1))

Since TJ is a subtree of TI ,
XI +

G v XJ x for some v,x in S*. hence A +
G vAx ---

(2)
Also note that since G is in cnf form it is impossible that
v = x = e. (o/w XI + XI implies existence of unit rule or e-
rule.

Since TI is a subtree of T,
S= X0 -->*G u XI y = u A y for some u,y in S*.

-->*G u vi A xi y ---- apply (2) i times
-->*G u vi w xi y ---- apply (1).

Hence u vi w xi y L for any i 0.
Also note that since XI …. Xm is the longest path in subtree TI
and has length n+1, h(TI) = length of its longest path

n+1.
==> (by lem 5.1) |vwx| = |yield(TI)| 2 h(T

I
) -1 = 2n = k. QED

S=X0

XI =A

XJ =A

Xm-1

wu v x y

T

TI

TJ
h(TI) n+1

h(T) n+1

Xm

|z| ≥ k = 2n |uvw| ≤ k

Example:Example:

Ex5.3: B = {aibjaibj | i,j > 0 } is not context free.
Pf: Assume B is context-free.
Then by the pumping lemma, $ k > 0 s.t. z B of length k,
$ uvxyz = z s.t. |vwx| k /\ |vx| > 0 /\ uviwxiy B for any i 0.
Now for any given k > 0, let z = akbkakbk ---(**).
Let z = uvwxy be any decomposition with |vwx| k /\ |vx| > 0.
case1: vwx = aJ (or bJ), 1 J k

==> aJ < v2wx2 < a2J ==> u v2wx2 y B
case2: vwx = aJ bI (or bI aJ) , 1 I + J k , I > 0 , J > 0

==> For the string uv2wx2y,in all cases (1&2 &3, see next slide) only
the first akbk or the last akbk or the middle bkak of z = akbkakbk is
increased ==> u v2wx2 y B

This shows that the statement (**) is not true for B.
Hence by the pumping lemma, B is not context free. QED

aa...aa bb...bb aa...aa bb...bb

vwx (2)
vwx (1) vwx (3)

Closure properties of CFLsClosure properties of CFLs

Theorem 5.2: CFLs are closed under union,
concatenation and Kleene’s star operation.

Pf: Let L1 = L(G1), L2 = L(G2) : two CFLs
generated by CFG G1 and G2, respectively.

==>
1. L1 U L2 = L(G’) where G’ has rules:

◦ P’ = P1 U P2 U {S’ --> S1; S’ --> S2}

2. L1 L2 =L(G’’) where G’’ has rules:
◦ P’’ = P1 U P2 U {S’’ --> S1 S2 }

3. L1* = L(G’’’) where G’’’ has rules:
◦ P’’’= P1 U {S’’’ -->e | S1 S’’’ }

NonNon--closure properties of CFLsclosure properties of CFLs

 are CFLs closed under complementation ?
◦ i.e., L is context free => S* - L is context free ?
◦ Ans : No.
◦ Ex: The complement of the set {ww | w S* } is
context free but itself is not context free.

 are CFLs closed under intersection ?
◦ i.e., L1 and L2 context free => L1 L2 is context
free ?

◦ Ans : No.
◦ Ex: Let L1 = {aib+aib+ | i > 0}
◦ L2 = { a+bja+bj | j > 0 } are two CFLs.
◦ But L1 L2 = B = { aibjaibj | i,j >0 } is not context
free.

 CFL Language is not closed under intersection.
But how about CFL and RL ?

Exercise: Let L be a CFL and R a Regular
Language. Then
L R is context free.

Hint: Let M1 be a PDA accept L by final state
and M2 a FA accepting R, then the product
machine M1XM2 can be used to accept L R
by final state. The definition of the product
PDA M1XM2 is similar to that of the product of
two FAs.

