The Pumping Lemma and Closure properties for Context-free Languages

The pumping Lemma for CFLs

- Issue: Is there any language not representable by CFGs ?
Ans: yes! Ex: $\left\{a^{n} b^{n} c^{n} \mid n>0\right\}$. But how to show it?
- For regular languages:
- we use the pumping lemma that utilizes the "finite-state" property of finite automata to show the non-regularity of a language.
- For CFLs:
can we have analogous result for CFLs ?
==> Yes! But this time uses the property of parse tree instead of the machine (i.e., PDAs) recognizing them.

Minimum height of parse
 trees for an input string

- Definition: Given a (parse) tree T,
- $\mathrm{h}(\mathrm{T})={ }_{\text {def }}$ the height of T , is defined to be the distance of the longest path from the root to its leaves.

Ex: a single node tree has height 0 ,
$h\left(T_{1}\right)=m$ and $h\left(T_{2}\right)=n==>h\left(\left(\operatorname{root} T_{1} T_{2}\right)\right)=\max (m, n)$ +1 .

- Lemma 5.1:

G: a CFG in Chomsky Normal Form ;
$D=A->_{G}$ a derivation with corresponding parse tree T_{D} with height n, where $A \in N$ and $\in *$. Then
$\left|\mid \leq 22^{n-1}\right.$. [i.e, height $=n=>$ width $\leq 2^{n-1}$.]
Note: since G is in cnf, every node of T_{D} has at most two children, hence T_{D} is a binary tree.
Pf: By ind. on n.

Shallow trees cannot have many

leaves

- Basis: $\mathrm{n}=1$ (not 0 why ?)

Then D: A $-->_{G}$ a (or $S-->_{G}$). $==>h\left(T_{D}\right)=1$ and $|a| \leq 2^{1-1}$. Inductive case: $n=k+1>1$. Then B, C, D_{1}, D_{2} s.t. $D: A-->_{G} B C->_{G} w$ and $D_{1}: B--*_{G} W_{1}, D_{2}: C--*_{G} W_{2}$ s.t. $\mathrm{w}=\mathrm{w}_{1} \mathrm{w}_{2}$ and $\mathrm{T}_{\mathrm{D}}=\left(\mathrm{A} \mathrm{T}_{\mathrm{D} 1} \mathrm{~T}_{\mathrm{D} 2}\right)$ and $\max \left(\mathrm{h}\left(\mathrm{T}_{\mathrm{D} 1}\right), \mathrm{h}\left(\mathrm{T}_{\mathrm{D} 2}\right)\right)=\mathrm{k}$. By ind. hyp., $\left|w_{1}\right| \leq 2 h\left(T_{01}\right)^{1}-1 \leq 2 \mathrm{k}^{\mathrm{k}-1}$ and $\left|\mathrm{w}_{2}\right| \leq 2 \mathrm{~h}\left(\mathrm{~T}_{\mathrm{o} 2}\right)-1 \leq 2^{\mathrm{k}-1}$ Hence $w=\left|w_{1}\right|+\left|w_{2}\right| \leq\left(2^{k-1}+2^{k-1}\right)=2^{2-1}$. QED
Lemma 5.2: G: a CFG in cnf;
S -->* ${ }_{\mathrm{G}} \mathrm{w}$ in ${ }^{*}$: a derivation with parse tree T .
If $|w| \geq 2^{n}==>h(T) \geq n+1$.
Pf: Assume $h(T) \leq n$
$==>|w| \leq 2^{n-1}<2^{n} \quad$--- by lemma 5.1
==> a contradiction !! QED

The pumping lemma for CFLs

Theorem: 5.3: L: a CFL. Then $k>0$ s.t. for all member z of L of length $\geq k$, there must exist a decomposition of z into uvwxy (i.e., $z=u v w x y$) s.t.
(1). $|v w x| \leq k$,
(2). $|v|+|x|>0$ and
(3). $u v^{i} w x^{i} y \in L$ for any $i \geq 0$.

Formal rephrase of Theorem 5.3: $\quad(\mathrm{L} \in \mathrm{CFL})=>$ $k>0 \forall z \in L \quad(|z| \geq k=>$

$$
u \vee w x y((z=u v x y z) / \backslash
$$

(1) / (2) / (3))).

Contrapositive form of the pumping lamma

- Contrapositive form of Theorem 5.3:
(Recall that $\sim q=>\sim p$ is the contrapositive of $p=>q$)
Let $Q={ }_{\text {def }} k>0 \forall z \in L(|z| \geq k=>$ u v w x y ((z = uvxyz) / (1) / (2) /

$$
\begin{aligned}
& \text { (3)))). } \\
& \text { Then } \sim Q=\forall k>0 \quad z \in L(|z| \geq k / \ \\
& \forall u \forall v \forall w \forall x \forall y((z=u v x y z) / \backslash(1) / \backslash(2)) \\
& =>\sim(3)) \text {). } \\
& =\forall \mathrm{k}>0 \quad \mathrm{z} \in \mathrm{~L}(|\mathrm{z}| \geq \mathrm{k} / \backslash \\
& \forall u \forall v \forall \mathrm{w} \forall \mathrm{x} \forall \mathrm{y}((\mathrm{z}=\mathrm{uvxyz}) / \backslash(1) / \backslash(2))=> \\
& \left.i \geq 0 \quad u v^{i} w x^{i} y \notin L \quad\right) \\
& =\forall k>0 \quad z \in L \quad(|z| \geq k / \backslash \\
& \left.\forall u v w x y=z \quad\left((1) / \backslash(2) \quad=>\quad i \geq 0 \quad u v^{i} w x^{i} y \notin L\right)\right) \text {. }
\end{aligned}
$$

i.e., for all $k>0$ there exists a member z of L with length $\geq k$ s.t. for any decomposition of z into uvwxy s.t. (1) / (2) hold, then there must exist $i \geq 0$ s.t. $u v^{i} w x^{i} y \notin L$.
The contrapotive form of Theorem 5.3 : Given a language L, If \sim Q then L is not context free.

Game-theoretical form of the pumping lamma:

~ Q: Game-theoretical argument: (to show ~Q true)
$\forall \mathrm{k}>0$
$z \in L \quad|z| \geq k / \$
$\forall u v w x y=z \quad(1) / \backslash(2)=>$
i ($\left.\mathrm{i} \geq 0 / \backslash u v^{i} w x^{i} y \notin \mathrm{~L}\right)$.

1. D picks any $k>0$
2. Y pick $a z \in L$ with length $\geq k$
3. D decompose z into uvwxy with

$$
|v w x| \leq k / \backslash|v|+|x|>0
$$

4. Y pick a numer $i \geq 0$
5. Y win iff ($u v^{i} w x^{i} y \notin L$ or D fails to pick k or decompose z at
step1\&3)
Notes:
0 . If Y has a strategy according to which he always win the game, then $\sim Q$ is true, otherwise $\sim \mathrm{Q}$ is false.
6. To show that " $\times P$ " is true, it is Your responsibility to give a witness c s.t. P is indeed true for that individual c. if Your opponent, who always tries to win you, cannot show that P(c) is false then You wins.
7. On the contrary, to show that " $\forall \times \mathrm{P}$ " is true, for any value c given by your opponent, who always tries to win you and hence would never give you value that is true for P provided he knows some values is false for P , You must show that $\mathrm{P}(\mathrm{C})$ is true.

Ex5.1:PRIME $=_{\text {def }}\left\{a^{k} \mid k\right.$ is a prime number $\}$ is not contextfree.
Pf: The following is a winning strategy for Y :

1. Suppose D picks $k>0 \quad / /$ for any k picked by D
2. Y picks $z=a^{p}$ where p is any prime number $>k+2$ (note
(obviously $z \in$ PRIME and $|z| \geq k$).
3. Suppose D decompose z into $a^{u} a^{v} a^{w} a^{\times} a^{y}$ with

$$
v+x>0 / v+w+x \leq k
$$

4. Y pick $i=u+w+y=p-(v+x)>k+2-k=2$ (note k
$\geq v+x \geq 1$)
Now $a^{u} a^{v i} a^{w} a^{x i a y}=a^{u+w+y} a(v+x) i=a^{i} a(v+x) i=a^{(v+x+1) i}$. Since $i>2$ and $v+x+1 \geq 2, a^{(v+x)(i+1)} \notin$ PRIME.
$==>Y$ win. Since Y always win the game no matter what k is chosen and how z is decomposed at step $1 \& 3$, by the game-theoretical argument, PRIME is not

Additional example

Ex 5.2: Let $A=\left\{a^{n} b^{n} c^{n} \mid n>0\right\}$ is not context-free.
Pf: Consider the following strategy of Y in the game:

1. D picks $k>0$
2. Y pick $z=a^{k} b^{k} c^{k} \quad / /$ obviously $z \in A$ and $|z| \geq k$
3. Suppose D decompose z into uvwxy with
$|v x|>0 / \backslash|v w x| \leq k$
4. Y pick $i=2==>$ who wins?
casel: v (or x) contains distinct symbols (a\&b or b\&c) $==>u v^{2} w x^{2} y$ is not of the form: $a^{*} b^{*} c^{*}==>u v^{2} w x^{2} y \notin$ A
case2: v and x each consist of the same symbol.
(i.e., each is of the form a^{*} or b^{*} or c^{*}).
$==>u v^{2} w x^{2} y$ increase only a 's or b's or c's but not all
$==>u v^{2} w x^{2} y \notin A$
 QED
pf: Let $G=(N, S, P, S)$ be any CFG in cnf s.t. $L=L(G)$.
Suppose $|N|=n$ and let $k=2^{n}$.
Now for any $z \in L(G)$ if $|z| \geq k$, by Lem 5.2, a parse tree T for z with $h(T)=m \geq n+1$. Now let

$$
P=X_{0} X_{1} \ldots X_{m}
$$

be any longest path from the root of T to a leaf of T. Hence 1. $X_{0}=S$ is the start symbol
2. $X_{0}, X_{1}, \ldots . X_{m-1}$ are nonterminal symbols and 3. X_{m} is a terminal symbol.

Since $X_{0} X_{1} \ldots X_{m-1}$ has $m>n$ nodes, by the pigeon-hole principle,
there must exist $\mathrm{i} \neq \mathrm{j}$ s.t. $\mathrm{X}_{\mathrm{i}}=\mathrm{X}_{\mathrm{j}}$
Now let I < m-1 be the largest number s.t. $X_{1+1}, \ldots . X_{m-}$ ${ }_{1}$ consist of distinct symbols and $X_{I}=X_{J}$ for some $1<\mathrm{j}<\mathrm{m}$.
Let $X_{I}=X_{J}=A$.

Proof of the pumping lemma (cont'd)

Let T_{\perp} be the subtree of T with root X_{1} and T_{j} the subtree of T with root X_{j}
Let yield $\left(T_{J}\right)=w$ (hence $X_{J} \rightarrow^{+}{ }_{G} \mathrm{~W}$ or $A \rightarrow{ }_{G} w \cdots$ Since T_{1} is a subtree of T_{1}
(2) $X_{1} \rightarrow^{+}{ }_{G} \vee X_{J} x$ for somé v, x in $*$. hence $A \rightarrow{ }_{G} \vee A x$

Also note that since G is in cnf form it is impossible that $\mathrm{v}=\mathrm{x}=$. (o/w $\mathrm{X}_{1} \rightarrow+\mathrm{X}_{1}$ implies existence of unit rule or rule.
Since T_{1} is a subtree of T,

$$
\begin{aligned}
& -->_{G}{ }^{4} v^{i} w x^{i} y \quad--- \text { apply (1). }
\end{aligned}
$$

Hence $u v^{i} w^{G} x^{i} y \in L$ for any $i \geq 0$.
Also note that since $X_{1} \ldots X_{m}$ is the longest path in subtree T_{1} and has length $\leq \mathrm{n}+1, \mathrm{~h}\left(\mathrm{~T}_{1}\right)=$ length of its longest path \leq
$\mathrm{n}+1$.
$==>\left(\right.$ by lem 5.1) $|v w x|=\mid$ yield $\left(T_{1}\right) \mid \leq 2^{h\left(T_{1}\right)-1}=2^{n}=k$. QED

Example:

Ex5.3: $B=\left\{a^{i b j} a^{i} b^{j} \mid i, j>0\right\}$ is not context free.
Pf: Assume B is context-free.
Then by the pumping lemma, $k>0$ s.t. $\forall z \in B$ of length $\geq k$, $u v x y z=z$ s.t. $|v w x| \leq k / \backslash|v x|>0 / \backslash u v^{i} w x^{i} y \in B$ for any $i \geq 0$.
Now for any given $k>0$, let $z=a^{k} b^{k} a^{k} b^{k}---(* *)$.
Let $z=u v w x y$ be any decomposition with $|v w x| \leq k / \backslash|v x|>0$.
casel: vwx =al (or bl), $1 \leq \mathrm{J} \leq \mathrm{k}$

$$
==>a \leq v^{2} w x^{2}<a^{2 j}==>u v^{2} w x^{2} y \notin B
$$

case2: $v w x=a l b^{\prime}\left(o r b^{\prime} a^{\prime}\right), 1 \leq \mathrm{l}+\mathrm{J} \leq \mathrm{k}, \mathrm{l}>0, \mathrm{~J}>0$
$==>$ For the string $u v^{2} w x^{2} y$, in all cases ($1 \& 2 \& 3$, see next slide) only the first $a^{k} b^{k}$ or the last $a^{k} b^{k}$ or the middle $b^{k} a^{k}$ of $z=a^{k} b^{k} a^{k} b^{k}$ is increased $==>u v^{2} w x^{2} y \notin B$
This shows that the statement (**) is not true for B.
Hence by the pumping lemma, B is not context free. QED
aa...aa bb...bb aa...aa bb...bb

Theorem 5.2: CFLs are closed under union, concatenation and Kleene's star operation. Pf: Let $L_{1}=L\left(G_{1}\right), L_{2}=L\left(G_{2}\right)$: two CFLs generated by CFG G_{1} and G_{2}, respectively.
==>

1. $\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\mathrm{L}\left(\mathrm{G}^{\prime}\right)$ where G^{\prime} has rules: ${ }^{\circ} P^{\prime}=P_{1} \cup P_{2} \cup\left\{S^{\prime}-->S_{1} ; S^{\prime}-->S_{2}\right\}$
2. $\mathrm{L}_{1} \mathrm{~L}_{2}=\mathrm{L}\left(\mathrm{G}^{\prime \prime}\right)$ where $\mathrm{G}^{\prime \prime}$ has rules: $P^{\prime \prime}=P_{1} \cup P_{2} \cup\left\{S^{\prime \prime}-->S_{1} S_{2}\right\}$
3. $\mathrm{L}_{1}{ }^{*}=\mathrm{L}\left(\mathrm{G}^{\prime \prime \prime}\right)$ where $\mathrm{G}^{\prime \prime \prime}$ has rules: $P^{\prime \prime \prime}=P_{1} \cup\left\{S^{\prime \prime \prime}-->\mid S_{1} S^{\prime \prime \prime}\right\}$

Non-closure properties of CFLs

- are CFLs closed under complementation ?
\circ i.e., L is context free => * L is context free ?
Ans: No.
${ }^{\circ}$ Ex: The complement of the set $\left\{w w \mid w \in{ }^{*}\right\}$ is context free but itself is not context free.
- are CFLs closed under intersection ?
\circ i.e., L_{1} and L_{2} context free $=>L_{1} \cap L_{2}$ is context free ?
Ans: No.
Ex: Let $\mathrm{L}_{1}=\left\{\mathrm{a}^{i} \mathrm{~b}^{+} \mathrm{a}^{i} \mathrm{~b}^{+} \mid \mathrm{i}>0\right\}$

$$
L_{2}=\left\{a^{+} b^{j} a^{+} b^{j} \mid j>0\right\} \text { are two CFLs. }
$$

But $L_{1} \cap L_{2}=B=\{$ aibiaibi $\mid i, j>0\}$ is not context free.

- CFL Language is not closed under intersection. But how about CFL and RL?

Exercise: Let L be a CFL and R a Regular Language. Then $L \cap R$ is context free.

Hint: Let M_{1} be a PDA accept L by final state and M_{2} a FA accepting R, then the product machine $M_{1} X M_{2}$ can be used to accept $L \cap R$ by final state. The definition of the product PDA $M_{1} X M_{2}$ is similar to that of the product of two FAs.

