The Pumping Lemma and Closure properties for Context-free Languages

The pumping Lemma for CFLs

- Issue: Is there any language not representable by CFGs ?
- Ans: yes! Ex: $\{a^nb^nc^n | n > 0\}$. But how to show it ?
- For regular languages:
 - we use the pumping lemma that utilizes the "finite-state" property of finite automata to show the non-regularity of a language.
- For CFLs:
 - can we have analogous result for CFLs ?
 - ==> Yes! But this time uses the property of parse tree instead of the machine (i.e., PDAs) recognizing them.

Minimum height of parse trees for an input string

- Definition: Given a (parse) tree T,
- h(T) = def the height of T, is defined to be the distance of the longest path from the root to its leaves.
 - Ex: a single node tree has height 0,
 - $h(T_1) = m$ and $h(T_2) = n = => h((root T_1 T_2)) = max(m,n) + 1.$
- Lemma 5.1:
 - G: a CFG in Chomsky Normal Form ;

 $D = A - -> *_G w$ a derivation with corresponding parse tree T_D with height n, where $A \in N$ and $w \in S^*$. Then

 $|w| \le 2^{n-1}$. [i.e, height = n => width $\le 2^{n-1}$.]

Note: since G is in cnf, every node of T_D has at most two children, hence T_D is a binary tree.

Pf: By ind. on n.

Shallow trees cannot have many leaves

• Basis: n = 1 (not 0 why ?)
Then D : A -->_G a (or S -->_G e). ==> h(T_D) = 1 and |a| ≤ 2 ¹⁻¹
Inductive case: n = k + 1 > 1. Then \$ B, C, D₁, D₂ s.t.
D : A -->_G BC -->*_G w and D₁: B -->*_G w₁, D₂: C-->*_G w₂ s.t.
w = w₁ w₂ and T_D = (A T_{D1} T_{D2}) and max(h(T_{D1}), h(T_{D2})) = k.
By ind. hyp.,
$$|w_1| \le 2^{-h(T_{D1})-1} \le 2^{-k-1}$$
 and $|w_2| \le 2^{-h(T_{D2})-1} \le 2^{k-1}$
Hence w = $|w_1| + |w_2| \le (2^{k-1} + 2^{k-1}) = 2^{n-1}$. QED
Lemma 5.2: G: a CFG in cnf;
S -->*_G w in S*: a derivation with parse tree T.
If $|w| \ge 2^n ==> h(T) \ge n + 1$.
Pf: Assume h(T) ≤ n
==> $|w| \le 2^{n-1} < 2^n$ ---- by lemma 5.1
==> a contradiction !! QED

The pumping lemma for CFLs

- Theorem: 5.3: L : a CFL. Then \$ k > 0 s.t. for all member z of L of length ≥ k, there must exist a decomposition of z into uvwxy (i.e., z = uvwxy) s.t.
 - (1). $|VWX| \le k$,
 - (2). |v| + |x| > 0 and
 - (3). $uv^iwx^iy \in L$ for any $i \ge 0$.

 Formal rephrase of Theorem 5.3: (L ∈ CFL) => \$k>0 ∀z∈L (|z| ≥ k => \$u\$v\$w\$x\$y ((z = uvxyz) /\ (1) /\ (2) /\ (3)))).

Contrapositive form of the pumping lamma

```
    Contrapositive form of Theorem 5.3:

  • (Recall that \sim q = > \sim p is the contrapositive of p = > q)
  • Let Q =_{def} k > 0 \forall z \in L (|z| \ge k = >
                       uvxyz) / (1) / (2) /
  (3))).
  Then ~ Q = \forall k > 0 \ z \in L ( |z| \ge k / 
                    \forall u \forall v \forall w \forall x \forall y ( (z = uvxyz)/\(1)/\(2))
  = > \sim (3)) )).
               = \forall k > 0 
                    \forall u \forall v \forall w \forall x \forall y ((z = uvxyz)/(1)/(2)) = >
                                                i \ge 0 uv^i wx^i y \notin L ))
               \forall uvwxy = z \quad ((1)/(2) = \$i \ge 0 \quad uv^iwx^iy \notin L)).
i.e., for all k > 0 there exists a member z of L with length \ge k s.t.
 for any decomposition of z into uvwxy s.t. (1) /\ (2) hold, then
  there must exist i \ge 0 s.t. uv^i wx^i y \notin L.
The contrapotive form of Theorem 5.3 : Given a language L, If \sim Q
  then L is not context free.
```

Game-theoretical form of the pumping lamma:

~ Q: ∀k>0

- $z \in L |z| \ge k /$
- $\forall uvwxy = z \quad (1)/(2) = >$
- Game-theoretical argument: (to show ~Q true)
 - 1. D picks any k > 0
 - 2. Y pick a $z \in L$ with length $\geq k$
 - 3. D decompose z into uvwxy with $|vwx| \le k / |v| + |x| > 0$
- \$i $(i \ge 0 / uv^i wx^i y \notin L)$. 4. Y pick a numer $i \ge 0$
 - Y win iff (uvⁱwxⁱy ∉ L or D fails to pick k or decompose z at

step1&3)

Notes:

- 0. If Y has a strategy according to which he always win the game, then ~Q is true, otherwise ~Q is false.
- To show that "\$x P" is true, it is Your responsibility to give a witness c s.t. P is indeed true for that individual c. if Your opponent, who always tries to win you, cannot show that P(c) is false then You wins.
- 2. On the contrary, to show that "∀x P" is true, for any value c given by your opponent, who always tries to win you and hence would never give you value that is true for P provided he knows some values is false for P, You must show that P(c) is true.

The set of prime numbers is not context-free

Ex5.1:PRIME =_{def} { a^{k} | k is a prime number } is not context-free.

Pf: The following is a winning strategy for Y:

- 1. Suppose D picks k > 0 // for any k picked by D
- 2. Y picks $z = a^{p}$ where p is any prime number >k+2 (note p>3)

(obviously $z \in PRIME$ and $|z| \ge k$).

3. Suppose D decompose z into a^ua^va^wa^xa^y with

 $v + x > 0 / v + w + x \le k$

4. Y pick i = u + w + y = p-(v+x) > k+2-k = 2 (note k $\ge v+x \ge 1$)

Now $a^{v}a^{v}a^{w}a^{xi}a^{y} = a^{u+w+y}a^{(v+x)i} = a^{i}a^{(v+x)i} = a^{(v+x+1)i}$. Since i > 2 and $v + x + 1 \ge 2$, $a^{(v+x)(i+1)} \notin PRIME$.

⁼ > Y Win. Since Y always win the game no matter what k is chosen and how z is decomposed at step 1&3, by the game-theoretical argument, PRIME is not

Additional example

Ex 5.2: Let A = $\{a^n b^n c^n \mid n > 0\}$ is not context-free. Pf: Consider the following strategy of Y in the game: 1. D picks k > 02. Y pick $z = a^k b^k c^k$ // obviously $z \in A$ and $|z| \ge k$ 3. Suppose D decompose z into uvwxy with $|vx| > 0 / |vwx| \le k$ 4. Y pick i = 2 = => who wins ? case1: v (or x) contains distinct symbols (a&b or b&c) = = > uv²wx²y is not of the form: a*b*c* = = > uv²wx²y \notin Α case2: v and x each consist of the same symbol. (i.e., each is of the form a* or b* or c*). = = > uv^2wx^2y increase only a's or b's or c's but not all = = > $UV^2WX^2Y \notin A$ In all cases $uv^2wx^2y \notin A$ So Y always win and $A \notin CFL$. OFD

Proof of the pumping lemma

pf: Let G = (N,S,P,S) be any CFG in cnf s.t. L= L(G). Suppose |N| = n and let k = 2ⁿ. Now for any z \in L(G) if $|z| \ge k$, by Lem 5.2, \$ a parse tree T for z with h(T) = m $\ge n+1$. Now let

 $P = X_0 X_1 \dots X_m$ be any longest path from the root of T to a leaf of T. Hence 1. X_0 = S is the start symbol

- 2. X_0 , X_1 ,..., X_{m-1} are nonterminal symbols and 3. X_m is a terminal symbol.
- Since $X_0 X_1 \dots X_{m-1}$ has m > n nodes, by the pigeon-hole principle,

there must exist $i \neq j$ s.t. $X_i = X_j$

Now let I < m-1 be the largest number s.t. X_{I+1} ,... X_{m-1} consist of distinct symbols and $X_I = X_J$ for some I < J < m.

Let $X_I = X_J = A$.

Proof of the pumping lemma (cont'd)

Let T_1 be the subtree of T with root X_1 and T_j the subtree of T with root X_j Let yield(T_j) = w (hence X_j \rightarrow^+_G w or $A \rightarrow^+_G$ w ---(1)) Since T_1 is a subtree of T_1 . $(2)^{X_1} \xrightarrow{\mathcal{A}}_G v X_J x$ for some v,x in S*. hence $A \xrightarrow{\mathcal{A}}_G vAx$ Also note that since G is in cnf form it is impossible that v = x = e. (o/w $X_1 \rightarrow X_1$ implies existence of unit rule or erule. Since T_1 is a subtree of T_2 $S = X_0' --> *_G u X_1 y = u A y$ for some u,y in S*. --> *_G u v' A x' y ---- apply (2) i times --> *_G u v' w x' y ---- apply (1). Hence $u v^i w x^i y \in L$ for any $i \ge 0$. Also note that since $X_1 \dots X_m$ is the longest path in subtree T_1 and has length $\leq n+1$, $h(T_1) =$ length of its longest path \leq n+1. = => (by lem 5.1) $|vwx| = |yield(T_1)| \le 2^{h(T_1)-1} = 2^n = k.$ QED

Example:

Ex5.3: $B = \{a^i b^j a^i b^j | i, j > 0\}$ is not context free. Pf: Assume B is context-free. Then by the pumping lemma, k > 0 s.t. $\forall z \in B$ of length $\geq k$, \$ $uvxyz = z \text{ s.t. } |vwx| \le k \land |vx| > 0 \land uv^iwx^iy \in B \text{ for any } i \ge 0.$ Now for any given k > 0, let $z = a^k b^k a^k b^k \dots (**)$. Let z = uvwxy be any decomposition with $|vwx| \le k / |vx| > 0$. case1: vwx = a^J (or b^J), $1 \le J \le k$ = = > $a^{J} < v^{2}wx^{2} < a^{2J} =$ = > $u v^{2}wx^{2} y \notin B$ case2: vwx = $a^{J}b^{I}$ (or $b^{I}a^{J}$), $1 \le I + J \le k$, I > 0, J > 0= = > For the string uv²wx²y, in all cases (1&2 &3, see next slide) only the first $a^k b^k$ or the last $a^k b^k$ or the middle $b^k a^k$ of $z = a^k b^k a^k b^k$ is increased == > $u v^2 w x^2 y \notin B$ This shows that the statement (**) is not true for B. Hence by the pumping lemma, B is not context free. QED

Closure properties of CFLs

Theorem 5.2: CFLs are closed under union, concatenation and Kleene's star operation. Pf: Let $L_1 = L(G_1)$, $L_2 = L(G_2)$: two CFLs generated by CFG G_1 and G_2 , respectively. ==>

1. $L_1 U L_2 = L(G')$ where G' has rules: • $P' = P_1 U P_2 U \{S' --> S_1; S' --> S_2\}$

2. L₁ L₂ =L(G'') where G'' has rules:
 • P'' = P₁ U P₂ U {S'' --> S₁ S₂ }

3. $L_1^* = L(G'')$ where G'' has rules: • $P''' = P_1 \cup \{S''' -->e \mid S_1 S''' \}$

Non-closure properties of CFLs

- are CFLs closed under complementation ?
 - i.e., L is context free => S* L is context free ?
 - Ans : No.
 - Ex: The complement of the set {ww | w ∈ S* } is context free but itself is not context free.

- are CFLs closed under intersection ?
 - i.e., L_1 and L_2 context free => $L_1 \cap L_2$ is context free ?
 - Ans : No.
 - Ex: Let $L_1 = \{a^ib^+a^ib^+ | i > 0\}$

 $L_2 = \{ a^+b^ja^+b^j | j > 0 \}$ are two CFLs.

• But $L_1 \cap L_2 = B =$ { $a^i b^j a^i b^j$ | i,j >0 } is not context free.

CFL Language is not closed under intersection.
 But how about CFL and RL ?

Exercise: Let L be a CFL and R a Regular Language. Then L ∩ R is context free.

Hint: Let M_1 be a PDA accept L by final state and M_2 a FA accepting R, then the product machine M_1XM_2 can be used to accept $L \cap R$ by final state. The definition of the product PDA M_1XM_2 is similar to that of the product of two FAs.