
The Pumping Lemma and Closure 
properties for Context-free Languages



The pumping Lemma for CFLsThe pumping Lemma for CFLs

 Issue: Is there any language not representable 
by CFGs ?

Ans:  yes!   Ex: {anbncn| n > 0 }.   But how to 
show it ? 

 For regular  languages:
◦ we use the pumping lemma that utilizes the “finite-state” 

property of finite automata to show the non-regularity of 
a language.

 For CFLs: 
◦ can we have analogous result for CFLs ?
◦ ==> Yes! But this time uses the property of parse tree 

instead of  the machine (i.e., PDAs ) recognizing them.



Minimum height of parse Minimum height of parse 
trees for an input stringtrees for an input string

 Definition: Given a (parse) tree T, 
 h(T) = def the height of T,  is defined to be the 

distance of the longest path from the root to its 
leaves.
◦ Ex: a single node tree has height 0,
◦ h(T1) = m and h(T2) = n ==>  h( (root T1 T2) ) = max(m,n) 

+1.
 Lemma 5.1: 

G: a CFG in Chomsky Normal Form ;
D =  A -->*G w a derivation with corresponding parse tree TD

with height n, where A  N and w  S*.  Then
|w|  2 n-1. [i.e, height = n => width ≤ 2n-1. ]

Note: since G is in cnf, every node of TD has at most 
two children, hence TD is a binary tree.

Pf: By ind. on n.



Shallow trees cannot have many Shallow trees cannot have many 
leaves leaves 

 Basis: n = 1  (not 0 why ?)
Then D : A -->G a  (or S -->G e).  ==> h(TD) = 1 and |a|  2 1-1 .

Inductive case: n = k + 1 > 1. Then $ B, C, D1, D2 s.t.
D : A -->G BC -->*G w and D1: B -->*G w1 , D2: C-->*G w2 s.t.
w = w1 w2 and TD = (A TD1 TD2) and max(h(TD1), h(TD2)) = k.

By ind. hyp., |w1|  2  h(T
D1

) -1  2  k -1 and |w2|  2  h(T
D2

) -1  2k -1 

Hence w = |w1| + |w2|  (2k -1 + 2k -1  ) = 2n-1. QED
Lemma 5.2:  G: a CFG in cnf;

S -->*G w in S*: a derivation with parse tree T.
If |w|  2n ==> h(T)  n + 1.

Pf:  Assume   h(T)  n
==> |w|  2n-1 < 2n --- by lemma 5.1
==> a contradiction !!  QED   



The pumping lemma for CFLsThe pumping lemma for CFLs

 Theorem: 5.3: L : a CFL. Then $ k > 0 s.t. for all 
member z of L of length  k, there must exist a 
decomposition of z into uvwxy (i.e., z = uvwxy) 
s.t.
(1). |vwx|  k,
(2). |v| + |x| > 0 and
(3). uviwxiy  L for any i  0.

 Formal rephrase of Theorem 5.3:   (L  CFL) => 
$k>0 zL  ( |z|  k => 

$u$v$w$x$y (( z = uvxyz) /\
(1) /\ (2) /\ (3))    )).



Contrapositive form of the pumping Contrapositive form of the pumping lammalamma

 Contrapositive form of Theorem 5.3:
◦ (Recall that ~q => ~ p is the contrapositive of p => q)
◦ Let Q =def $k>0zL ( |z|  k => 

$u$v$w$x$y (( z = uvxyz) /\ (1) /\ (2) /\
(3))    )).
Then ~ Q = k>0 $z L ( |z| k /\

uvwxy ( (z = uvxyz)/\(1)/\(2)) 
=>~(3))    )).

= k>0$zL ( |z|  k /\
uvwxy ( (z = uvxyz)/\(1)/\(2)) =>

$i 0 uviwxiy  L ))
= k>0  $zL  ( |z|  k /\

uvwxy=z  ( (1)/\(2)     => $i 0 uviwxiy  L) ).
i.e., for all k > 0 there exists a member z of L with length  k s.t.
for any decomposition of z into uvwxy  s.t. (1) /\ (2) hold, then 
there must exist i  0 s.t. uviwxiy  L.

The contrapotive form of Theorem 5.3 : Given a language L, If ~Q 
then L is not context free.



GameGame--theoretical form of the theoretical form of the 
pumping pumping lammalamma::

~ Q: Game-theoretical argument: (to show ~Q true)
k>0 1.  D picks any k > 0
$zL  |z|  k /\ 2.  Y pick a z L with length  k 
uvwxy=z   (1)/\(2)  => 3.  D decompose z into uvwxy with

|vwx|  k /\ |v| + |x| > 0 
$i  (i  0 /\ uviwxiy  L) .  4. Y pick a numer i  0

5. Y win iff (uviwxiy  L or D fails to 
pick k or decompose z at                  

step1&3)
Notes: 
0. If Y has a strategy according to which he always win the game, then ~Q is true, otherwise 

~Q is false.
1. To show that “$x P” is true, it is Your responsibility to give a witness c s.t. P is indeed true 

for that individual c.   if Your opponent, who always tries to win you,  cannot show that P(c) 
is false then You wins.

2. On the contrary, to show that “x P” is true, for any value c given by your opponent, who 
always tries to win you and hence would never give you value that is true for P provided 
he knows some values is false for P, You must show that P(c) is true.



The set of prime numbers is not The set of prime numbers is not 
contextcontext--freefree

Ex5.1:PRIME =def {ak | k is a prime number } is not context-
free.

Pf: The following is a winning strategy for Y:
1.  Suppose D picks k > 0              // for any  k picked by D  
2.  Y picks z = ap where p is any prime number >k+2 (note 
p>3)  

( obviously z  PRIME and |z|  k  ).
3. Suppose  D decompose z into auavawaxay with

v + x > 0 /\ v + w + x  k 
4. Y pick i = u + w + y = p-(v+x) > k+2 –k =2 (note k 
v+x 1)

Now auaviawaxiay = au + w + y a (v+x) i = ai a (v+x) i = a(v+x+1)i.Since 
i>2 and v+x+1 2 , a(v+x)(i+1)  PRIME.

==> Y win. Since Y always win the game no matter what k is chosen and how 
z is decomposed at step 1&3, by the game-theoretical argument, PRIME is not 
context-free. QED



Additional exampleAdditional example

Ex 5.2: Let A = {anbncn | n > 0 } is not context-free.
Pf: Consider the following strategy of Y in the game:
1.  D picks k > 0 
2.  Y pick z = ak bk ck // obviously z  A and |z|  k  
3. Suppose  D decompose z into uvwxy with

|vx| > 0 /\ |vwx|  k 
4. Y pick i = 2   ==>   who wins ?
case1: v (or x) contains distinct symbols (a&b or b&c)

==> uv2wx2y is not of the form:a*b*c* ==> uv2wx2y 
A

case2: v and x each consist of the same symbol.
(i.e., each is of the form a* or b* or c* ).

==> uv2wx2y increase only a’s or b’s or c’s but not all
==> uv2wx2y  A
In all cases  uv2wx2y  A So Y always win and A  CFL. 

QED



Proof of the pumping lemmaProof of the pumping lemma

pf: Let G = (N,S,P,S) be any CFG in cnf s.t. L= L(G).
Suppose |N| = n and let k = 2n. 
Now for any z L(G) if  |z|  k, by Lem 5.2, $ a parse 
tree T for z with h(T) = m  n+1. Now let 

P  =   X0 X1 …. Xm
be any longest path from the root of T to a leaf of T.

Hence 1. X0 = S is the start symbol
2. X0 ,X1 ,…. Xm-1 are nonterminal symbols and
3. Xm is a terminal symbol.

Since X0 X1 …. Xm-1 has m > n nodes, by the pigeon-hole 
principle,

there must exist i  j s.t. Xi = Xj
Now let I < m-1 be the largest number s.t. XI+1 ,…. Xm-
1 consist of distinct symbols  and  XI = XJ for some 
I<J< m. 

Let XI = XJ = A.  



Proof of the pumping lemma (cont’d)Proof of the pumping lemma (cont’d)

Let TI be the subtree of T with root XI and
TJ the subtree of T with root XJ

Let yield(TJ) = w  (hence XJ +
G w     or       A +

G w  ---
(1)   )

Since TJ is a subtree of TI ,
XI +

G v XJ x for some v,x in S*.  hence  A +
G vAx ---

(2) 
Also note that since G is in cnf form it is impossible that 
v = x = e. (o/w XI + XI implies existence of unit rule or e-
rule.

Since TI is a subtree of T,
S= X0 -->*G u XI y = u A y for some u,y in S*.

-->*G u vi A xi y   ---- apply (2) i times
-->*G u vi w xi y ---- apply (1).

Hence u vi w xi y  L for any i  0.
Also note that since XI …. Xm is the longest path in subtree TI
and has length   n+1, h(TI) =  length of its longest path 

n+1.
==> (by lem 5.1) |vwx| = |yield(TI)|  2 h(T

I 
) -1 = 2n = k. QED



S=X0

XI =A

XJ =A

Xm-1

wu v x y

T

TI

TJ
h(TI) n+1

h(T)  n+1

Xm

|z| ≥ k = 2n |uvw| ≤ k



Example:Example:

Ex5.3: B = {aibjaibj | i,j > 0 } is not context free.
Pf: Assume B is context-free.
Then by the pumping lemma, $ k > 0 s.t. z  B of length  k, 
$ uvxyz = z s.t. |vwx|  k /\ |vx| > 0 /\ uviwxiy  B for any i  0.
Now for any given k > 0, let z = akbkakbk  ---( ** ).
Let z = uvwxy be any decomposition with |vwx|  k /\ |vx| > 0.
case1: vwx = aJ (or bJ ), 1  J  k  

==> aJ < v2wx2 < a2J    ==> u v2wx2 y  B
case2: vwx = aJ bI (or bI aJ) , 1  I + J  k , I > 0 , J > 0

==> For  the string uv2wx2y,in all cases (1&2 &3, see next slide) only 
the first akbk or the last akbk or the middle bkak of z = akbkakbk  is 
increased   ==> u v2wx2 y  B 

This shows that the statement (**) is not true for  B.
Hence by the pumping lemma, B is not context free. QED



aa...aa bb...bb aa...aa bb...bb

vwx (2)
vwx (1) vwx (3)



Closure properties of CFLsClosure properties of CFLs

Theorem 5.2: CFLs are closed under union, 
concatenation and Kleene’s star operation.  

Pf: Let L1 = L(G1), L2 = L(G2) : two CFLs 
generated by CFG G1 and G2, respectively.

==> 
1.  L1 U L2 = L(G’) where G’ has rules:

◦ P’ = P1 U P2 U {S’ --> S1; S’ --> S2}

2.  L1 L2 =L(G’’) where G’’ has rules:
◦ P’’ = P1 U P2 U {S’’ --> S1 S2 }

3.  L1* = L(G’’’) where G’’’ has rules:
◦ P’’’= P1 U {S’’’ -->e | S1 S’’’ }



NonNon--closure properties of CFLsclosure properties of CFLs

 are CFLs closed under complementation ?
◦ i.e., L is context free => S* - L is context free ?
◦ Ans : No.
◦ Ex: The complement of the set {ww | w  S* } is 
context free but  itself is not context free.

 are CFLs closed under intersection ?
◦ i.e., L1 and L2 context free =>  L1 L2 is context 
free ?

◦ Ans : No.
◦ Ex: Let L1 = {aib+aib+ | i > 0}
◦ L2 = { a+bja+bj | j > 0 } are two CFLs.
◦ But L1 L2 = B = { aibjaibj | i,j >0 } is not context 
free.



 CFL Language is not closed under intersection. 
But how about CFL and RL ?

Exercise: Let L be a CFL and R a Regular 
Language. Then
L  R is context free.

Hint: Let M1 be a PDA accept L by final state 
and M2 a FA accepting R, then the product 
machine M1XM2 can be used to accept  L  R 
by final state. The definition of the product 
PDA M1XM2  is similar to that of the product of 
two FAs.


